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Sensorimotor Contingencies 
and the Dynamical Creation 

of Structural Relations 
Underlying Percepts

Jürgen Jost

Abstract

A cognitive system is coupled to its environment via a  sensorimotor loop. It receives 
signals from, and in turn acts upon, the environment, and the resulting actions infl uence 
the structure of future signals. This chapter looks at several possible optimization prin-
ciples for this loop, all of which have certain shortcomings. It argues for a more refi ned 
interaction where the actions create certain structural relations among the sensory data 
as well as between those data and the system’s movements. These relations induce cor-
relations between neuronal activities, and it is argued that these correlations underlie 
percepts which correspond to a specifi c spatiotemporal neuronal pattern. Such a pattern 
is the result of a learning process that transforms correlations into associations.

 Introduction

The pragmatic turn in cognitive science (Engel et al. 2013) grounds cogni-
tion in interactions with the environment via  sensorimotor couplings, instead 
of internal representations of an external world. This has two important as-
pects. On one hand, the cognitive system acts on the environment in such a 
way that it can best extract information from it and can let the environment 
carry out computations, instead of having to simulate them internally. On the 
other, actions cause variations in sensory input from which correlations can 
be extracted via  sensorimotor contingencies. Such correlations then underlie 
percepts. The fi rst aspect has been explored by Clark (2008); the second builds 
upon the sensorimotor account of vision of O’Regan and Noë (2001). Here, we 
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122 J. Jost 

will focus primarily on the second aspect. Our considerations will be guided 
and constrained by:

Thesis 1 Models that require very diffi cult and computationally inten-
sive computations for creating percepts and identifying objects cannot 
be right. Perception in standard situations is fast, apparently effortless, 
and simple.

Of course, one may object here that  perception only appears simple, and is 
described as simple in  fi rst-person reports, and that the underlying neuronal 
activity patterns may be substantially more complex. At least the speed of per-
ception is a fact that is independent of subjective experience, and while per-
ception may be more diffi cult than it subjectively appears, its ease and general 
reliability do impose constraints on any computational model.

The question  then is: Why and how do the sensorimotor loop and  senso-
rimotor contingencies make the implementation of this principle possible? To 
illustrate, consider the following example: When you want to catch a ball, you 
could, in principle, attempt to compute its trajectory according to the principles 
of Galilean and Newtonian dynamics. For that, you would need to have precise 
information about its initial position and velocity, its mass, its air resistance, 
and intervening factors such as wind direction and speed. You would then need 
to solve the corresponding differential equations to fi nd out where the ball will 
land. To do this to the desired accuracy is very hard, if not outright impossible. 
In fact, there is an easier well-known solution.1 Simply run in such a way that 
the angle under which you see the ball remains constant. Then you will ar-
rive at the right time at the right spot where the ball will land and be able to 
catch it. This seems much simpler than the Newtonian strategy. The crucial 
point is that by using the constant angle strategy, you can extract a lot more 
information from the environment than with the Newtonian strategy, where ac-
curate information is utilized only at the beginning of the process. You would 
continuously sample information about the position and speed of the ball, and 
you would adjust your actions so that the information about the viewing angle 
remains constant. That is, you would let the environment, or in this case more 
precisely the ball,   compute its own trajectory, whereas with the Newtonian 
strategy, you would have to do that computation yourself. But there is more in-
sight to gain here. Through your actions (i.e., running toward the ball with this 
strategy) you would generate specifi c correlations between your own motions 
and your visual input. The moving ball is correlated in a different manner with 
your motion than the static environment. This then generates the percept of the 
fl ying ball. Of course, this latter effect could also be achieved by actions other 

1 Note: this simplifi ed account is not appropriate for all ball-catching activities. For instance, 
in football, it would not be the appropriate strategy to take, for various reasons. Nevertheless, 
this strategy is typically used by non-experts and many animals (e.g., dogs) as they attempt to 
catch a ball.
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than running toward the ball, for instance by simply moving your head so that 
your gaze can follow the ball. Putting this in more abstract terms, your actions 
generate variations of your sensory input, which you can use to extract specifi c 
structures. These specifi c structures consist in correlations, and once your neu-
ronal system has learned to translate these correlations into associations, it will 
generate specifi c spatiotemporal activity patterns in response to such correla-
tions. As shall be argued, these will then underlie the corresponding percepts.

 Evolutionary Principles

Before we get to that task, however, let us widen our perspective and view 
the problem from an evolutionary point of view. A biological organism (or for 
our purposes, being interested in cognition, more specifi cally an animal) lives 
because it is the descendent of ancestral lines whose members all successfully 
survived and reproduced, in fi erce competition with other biological organ-
isms. Its genome was produced by recombining those of its parents, perhaps 
with some variations.  Therefore, we expect that it is also well adapted to envi-
ronmental conditions and circumstances, not necessarily the current ones, but 
at least those in which its ancestors succeeded. This is what the term “fi tness” 
attempts to capture, as the actual or expected number of descendents.2 We also 
expect that its structures and parts are well suited to cope with its environment. 
In that sense, loosely speaking, those structures should serve some purpose 
and contribute as much as possible to the reproductive fi tness. Importantly, 
survival is not an ultimate goal in itself, but is subordinate to that of successful 
reproduction. Of course, evolution never stops, and biological structures are 
therefore, in general, not optimal. One could argue that equilibrium theories in 
biology, and for that matter also in economics, are fundamentally fl awed be-
cause the competition never sleeps. Nevertheless, in light of the above, it seems 
insightful to approach them via optimization principles. While the optima may 
typically not be realized by biological structures, they may often come close 
to being optimal. More importantly, we may then interpret observed dynamics 
with the help of the metaphor of transients in a fi tness landscape structured by 
local optima.

Thesis 2 The function of the sensory system of an animal consists in 
gathering relevant information. Information is relevant when the animal 
can select actions which, conditional on this information, are useful for 
the animal in the sense that it increases its fi tness.

Action does not need to take place immediately upon the acquisition of rel-
evant information. An animal can gather and store a lot of information as the 
basis for the selection of future actions. Information can also be indirect. For 

2 This concept is not as trivial as it may appear. For further discussion, see Jost (2003, 2004).
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example, you can see that it is raining and seek cover, so as not to become wet, 
or you can observe a gray cloud and infer that it will rain. Or, you can check 
the weather forecast.

Another question is whether and how the information is represented. The 
representation need not be explicit. It can be represented implicitly, and per-
haps only partially or incompletely, through memory traces. It can also be 
stored externally. It only needs to be accessible when needed. In Thesis 4, we 
shall discuss how learning mechanisms transform the information contained in 
correlations into internal associations.

The interaction between sensations and actions is more subtle and intricate 
than expressed by Thesis 2. The activity of the system is also necessary to gen-
erate percepts (discussed further below; Thesis 3). In particular, an animal acts 
not only on the information that it has acquired, it acts to acquire information 
in the fi rst place.

 The Sensorimotor Loop

We begin with a diagram representing the dynamics of the  sensorimotor loop.

g e at t, 1 g e at t1,

f s mt t, f s mt t1 1,
t t+1 t+2

Wt Wt+1 Wt+2

st at st+1 at+1 st+2 . . .. . . (8.1) 

Here, Σt is the system at time t, and Wt is the environment, the external world, 
at time t. At time t, the environment is in state et, and the system in state mt. The 
latter receives the sensory signal st from Wt and acts via at upon the environ-
ment. The effect of the action affects the external state et+1. Thus, we have the 
state transitions

e g e at t t+ −( )1 1= , (8.2) 

m f s mt t t+ ( )1 = , . (8.3) 

The transitions in equations (8.2) and (8.3) could be deterministic or stochas-
tic, but the fundamental point is that the external state et is not directly acces-
sible to the system. Thus, from the perspective of the system, there is a fun-
damental asymmetry between equations (8.2) and (8.3). The system can only 
derive some partial, incomplete, and possibly inaccurate information about et 
from its sensory data st, and it can partly infl uence the next state et+1 through 
its action at. Here, we have arranged the relative times so that the environment 
is always a little ahead of the system, in the sense that the sensory signals are 
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received instantaneously, but the system’s actions only become effective at the 
next time step.

There are some conceptual problems associated with this representation of 
the sensorimotor loop, which will be addressed below. However, let us fi rst try 
to extract some insight from this representation.

A similar model could also be formulated in continuous time. In that case, 
the difference equations (8.2) and (8.3) would be replaced by (ordinary) dif-
ferential equations. Ordinary differential equations are, in fact, mathematically 
easier to treat than difference equations, but perhaps it is intuitively easier to 
grasp the meaning of difference equations.

O ptimization Principles

Various  optimization principles have been proposed for the sensorimotor inter-
action of a system with its environment. Optimization, here, can mean either 
maximization or minimization, and in fact, the same, or a similar, quantity is 
maximized in some and minimized in other principles. This may sound some-
what puzzling and may make optimization principles questionable, but fol-
lowing previous work (Jost et al. 1997; Jost 2004), it may indeed be plausible 
to sometimes minimize and sometimes maximize a particular quantity, and in 
that case, the system will take recourse to schemes that operate on different 
timescales. The timescale of actual perception, of correlation-based learning, 
and of biological evolution are clearly separated, but as one knows from many 
models in physics, a dynamical system can by itself separate into slow and 
fast dynamics (such an effect leads to a so-called center manifold on which the 
slow dynamics takes place; see, e.g., Jost 2005). In cognition, sensory inputs 
are gathered and different inputs need to be compared to detect regularities. 
The latter should naturally occur on a slower timescale than the former. That 
is, cognition requires both online interaction with the world and offl ine pro-
cessing of data. Therefore, fi ner distinct timescales may well exist, but here 
we will not explore these details (for a general discussion of timescales in 
cognitive and other complex systems, see Jost 2004). Some of the quantities to 
be optimized involve differences between two terms, and so naturally one of 
them will be maximized while the other will be minimized. Again, being able 
to operate on different timescales may help to avoid such confl icts.

There is the basic choice between exploitation and exploration: to utilize 
what one knows already to its fullest extent, without wasting any energy or 
incurring any risk by searching for new opportunities, or to search actively for 
better resources than what is currently available.

Usually, such optimization principles are formulated in information theo-
retical terms. Informally speaking, the alternative is whether one should go for 
predictability and prefer a completely black TV screen, which never changes 
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its state or rather go for novelty and appreciate white noise most. Of course, 
neither option by itself sounds like a very intelligent or useful strategy.

To describe a sample of such optimization principles, we need some basic 
concepts from information theory. For simplicity, we will only consider situa-
tions with fi nitely many possible states. Thus, let there be states xi for i = 1,...,n 
with probabilities p(xi) = pi (for short), precisely one of which has to occur at 
any given time. Thus

pi
i
∑ =1. (8.4) 

We also say that there is a random variable, called X, whose possible states are 
x1,...,xn. Before fi nding out which one occurs, we are in a state of uncertainty, 
and when we observe the actual state, we gain information; that is, we reduce 
our uncertainty. The expected loss of uncertainty is quantifi ed by Shannon’s 
information or entropy:

H X H p p p pn i
i

i( ) = ( , , ) =1 2… −∑ log . (8.5) 

(This information is measured in bits, where a bit is the information gained 
when learning which of two equally probable events occurred.)

When we have another random variable Y, with possible states y1,...,ym, 
we can also look at the probability p(xi, yj) for simultaneously X being in state 
xi and Y in yj. As in equation (8.4), p x yi ji j

,
, ( )=∑ 1, and we have the Shannon 

information of the pair:

H X Y p pi j i j
i j

( , ) = .2−∑ , ,
,

log (8.6) 

Now, X and Y might be independent, or equivalently p(xi, yj) = pX(xi)pY(yj) for 
all i, j (where we now use a subscript to indicate the random variable whose 
probabilities we are taking). In this case, observing Y does not reduce our un-
certainty about X. When they are not independent, in contrast, Y contains some 
information about X. Thus, when the state X cannot be directly observed, but 
the state of Y is accessible, we can extract some information about the former 
from the latter. This is quantifi ed by the mutual information between X and Y:

MI X Y H X H Y H X Y( : ) = ( ) ( ) ( , ).+ − (8.7) 

This quantity is symmetric in X and Y; that is, when Y contains information 
about X, then X contains the same amount of information about Y. Also, this 
quantity is always nonnegative; that is, when X and Y are not independent, 
the entropy H(X,Y) of the pair is smaller than the sum H(X) + H(Y) of the 
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individual entropies. We can then also defi ne the conditional information about 
X when Y is known:

H X Y H X Y H Y( | ) = ( , ) ( ).− (8.8) 

From equation (8.7) we then have:

MI X Y H X H X Y( : ) = ( ) ( | ).− (8.9) 

In words, the mutual information MI(X:Y) tells us how much the uncertainty 
about the state of X is reduced when we learn about the state of Y. Again, when X 
and Y are independent, then H X Y H X( | ) = ( ) and consequently MI(X : Y) = 0.

The mutual information between two random variables can also be condi-
tioned on a third one:

MI X Y Z H X Z H X Y Z( : | ) = ( | ) ( | , ).− (8.10) 

Next we introduce the Kullback–Leibler distance or relative entropy between 
two probability distributions p and q:

D p q p p
qi

i

i

i

�( ) =∑: log2 . (8.11) 

(Note that this expression is not symmetric in p and q.) Let now X and Y be 
random variables on the same space with individual distributions pX, pY and 
joint distribution p. Then

MI X Y D p p pX Y( : ) = ( || ), (8.12) 

the Kullback–Leibler distance between the joint probability distribution p and 
the product distribution pX · pY under which X and Y are independent. Once 
more, this says that the mutual information between X and Y quantifi es how far 
they are from being independent.

Equipped with these tools, we can now formulate some optimization prin-
ciples for the system S in equation (8.1) that can control its actuators and ac-
quire information through its sensors. Again, we assume that either of them 
can only be in fi nitely many states. Let us proceed in steps. For each strategy 
proposed below, shortcomings will be identifi ed, and this will then motivate 
the next strategy.

In particular, we shall discuss some caricatures of various strategies pro-
posed in the literature. Often, those strategies involve more than two time 
steps; that is, they not only optimize some quantity at time t + 1 conditioned 
on what occurred at time t, but look further into the future and recall longer 
sequences from the past. As this adds little to the basic principle, we shall sup-
press this issue systematically. In technical terms, we could say that we assume 
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that all considered processes possess the Markov property; that is, all informa-
tion from the past relevant for the future is contained in the present state.

Strategy 1 Minimize the surprise; that is, the sensory information H(St+1).

Optimal behavior: Close your eyes.

Strategy 2 Look for novelty; that is, maximize H(St+1).

Optimal behavior: Seek random noise.

Clearly, neither of the preceding strategies is very meaningful. More precisely, 
the system should try to acquire some information through its sensors, but it 
should not strive to gather as much information (8.5) as possible because such 
information may not contain any meaning for the system. Therefore, the fol-
lowing strategies attempt to collect information that is either produced by the 
system’s own actions or is predictable in terms of past sensor information.

Strategy 3 Maximize the  empowerment. 

MI A S H S H S At t t t t( : ) = ( ) ( | ).1 1 1+ + +− (8.13) 

That is, try to act in such a way that you get as much information as possible 
about your sensor states at time t + 1.

The empowerment principle states that the system should act such that 
H(St+1) is large,3 but H(St+1)At is small. Thus, the sensors should deliver a 
lot of information in the future, but this should already to a large degree be 
predictable by the actions carried out at present. As interpreted by Klyubin et 
al. (2005), empowerment is the amount of information that the systems can 
inject into the environment via its actuators and recapture through its sensors.

Optimal behavior: Wiggle your feet and look at them.

Strategy 4 Maximize the predictive information.

MI S S H S H S St t t t t( : ) = ( ) ( | ).1 1 1+ + +− (8.14) 

Optimal behavior: Look for complicated situations that you understand well.

Before proceeding, let us analyze the example of saccadic eye movements with 
those concepts.4 Here, H(St+1), the information received on the retina after the 

3 It is important to note that by the design of the sensorimotor loop (8.1), the actions at time t will 
infl uence the state of the external world at time t + 1 and thus also the sensory data st + 1 that the 
system will get back at time t + 1.

4 Only an abstract account is presented here, suppressing many important details, to elucidate 
the underlying principles. For a precise analysis of saccadic eye movements from an informa-
tion perspective, see Bruce and Tsotsos (2006). 
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movement, may be quite large. At least when the scene is still, it is, however, 
essentially determined by the combination of St (i.e., what had been received 
before the movement) and At, that movement. Thus, H S S At t t( | , )1+  is small. In 
that sense, the quantity H S H S S At t t t( ) ( | , )1 1+ +−  could be large, and we would 
have an amalgam of Strategies 3 and 4. In any case, this would not amount to 
true novelty. In fact, for a still scene, the best action would be not to move the 
eyes at all, because then St+1 = St (although for the ball-catching example dis-
cussed above, this is no longer so trivial, as there, one piece of sensory infor-
mation, the viewing angle, should indeed remain constant). Neither does this 
seem to be the main purpose of saccadic and other eye movements. Instead, 
one important aspect is that they serve to focus on what is novel and therefore 
interesting (discussed below, when another important function of such move-
ments, namely the generation of correlations, is identifi ed).

Thus, while the two preceding strategies go in the right direction, they still 
lead to a somewhat solipsistic attitude, insofar as the system is not really trying 
to learn something about its environment itself. It would be desirable to include 
the external states.

Strategy 5 Maximize the nontrivial information closure.

MI S E MI S E S H S H S E
H S S H

t t t t t t t t

t t

( : ) ( : | ) = ( ) ( | )
( | )

1 1 1 1

1

+ + + +

+

−−

− + (( | , ).1S E St t t+

(8.15) 

In contrast to Strategy 4, the system is not just trying to learn something about 
itself: it also seeks predictable sensory information about the environment. The 
problem with this strategy, however, is that the system has no means to access 
Et except indirectly through its sensory data St. Therefore, it is not in a position 
to implement Strategy 5.

It is important to emphasize that the above only presents caricatures of prin-
ciples developed in the literature. The actual principles are more refi ned and 
often fi nd useful applications. It is not the purpose of this volume to produce 
comprehensive literature surveys and beyond the scope of this chapter to list 
all the optimization principles proposed for the information processing by em-
bedded agents. Therefore, a survey of the very extensive literature on those 
issues is not attempted here; neither shall I mention the many variants of those 
principles proposed over the years. I would like, however, to list at least those 
sources that have introduced the quantities discussed above.

The concept of  empowerment was introduced in Klyubin et al. (2005); how-
ever, in contrast to the above presentation, it was conceived as a multistep 
principle that is more powerful than the simplifi ed one-step version presented 
here. In particular, the optimization of the action according to (8.13) was con-
ceived only as an intermediary step for fi nding the optimal sensory input St that 
enables the highest control over future inputs through own actions. A similar 
remark applies to the use of predictive information as an optimization principle 
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in Ay et al. (2012). Finally, the nontrivial information closure (8.15) was intro-
duced by Bertschinger et al. (2008) for a different purpose, in the context of a 
system theoretical analysis, and not as an optimization principle for an agent 
interacting with its environment.

Looking at the proposed Strategies 1–5, we seem to be at an impasse. In 
order not to be overwhelmed by meaningless noise, the system can only look at 
its own feet. The way out may consist in  adaptation and learning. Importantly, 
the system cannot only control its actions at, but also modify its internal state 
mt. Thus, we must look at the problem from a somewhat different perspective: 
that of learning theory.

We assume that there is some external probability distribution p that the 
system tries to infer on the basis of its sensory data. That is, the sensory data are 
supposed to be random samples of p. (To avoid technical diffi culties, we assume 
here that p is stationary, i.e., does not change in time.) The system then creates 
a subjective model q which it adapts on the basis of the incoming sensory data 
stream. Thus, it tries to minimize the  Kullback–Leibler divergence (8.11):

D p q p s p s q s
s

�( )= ( ) ( )− ( )( )∑ log log . (8.16) 

Since the system has only its past sensory data sτ,τ = 0,...,t at its disposal, at 
each time t, it can adapt q so as to minimize

p s p s q s
t

τ τ τ
τ

( ) ( )− ( )( )
=
∑ log log
, ,0…

(8.17) 

within some class of probability distributions that need to satisfy some com-
plexity bound to avoid overfi tting (Vapnik 2000). Of course, when t gets large, 
such a batch learning may become unfeasible. We could introduce some fading 
memory effect to the extent that signals from the more remote past get lower 
weights, or even get forgotten. Alternatively, we can perform some stochastic 
gradient descent, that is, increase the subjective probability of a signal sτ when-
ever it occurs as a sample. For such a stochastic gradient descent, the frequency 
of adaptations depends on the unknown objective probability distribution p, 
but their magnitude is determined by the current subjective model q.

Of course, since p is not known to the system, but only the samples sτ drawn 
from it, the fi rst term in (8.16) or (8.17), the entropy term –H(p), needs to be 
addressed differently. That is where the actions come into play.

Let us look at a concrete example that will also highlight the conceptual dif-
ference to Strategy 3. A visual signal is received when a receptive fi eld on the 
retina is stimulated. Thus, for this example, the collection of receptive fi elds 
is the space of values of the random variable St. When the system optimizes 
(8.16) with regard to q, it simply increases the probability assigned to a re-
ceptive fi eld whenever that fi eld gets stimulated. In contrast, when it tries to 
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optimize with regard to p, it would shrink a receptive fi eld that gets stimulated 
so that its probability of being stimulated is decreased, and enlarge other fi elds 
that are less frequently stimulated so that their probability of getting stimulated 
is increased. This will have the effect of making the probability distribution p 
of the signals (i.e., the stimulation probabilities of the receptive fi elds) more 
uniform. Thus, the entropy of p will increase, and since that entropy occurs 
with a negative sign in (8.16), the  Kullback–Leibler divergence D p q( || )  will 
therefore decrease. Thus, in contrast to Strategy 3, the system does not try to 
move into a region of the signal space where the signals are consequences of 
its own actions, but rather rearranges the signal distribution in such a manner 
as to increase its entropy.

Of course, the system should try to act in such a manner as to decrease 
D p q( || ) most effi ciently. This also leads to another important aspect. When we 
discussed the Strategies 1–5, we did not specify how minimization or maximi-
zation is actually achieved. In principle, the system could employ a stochastic 
strategy, along the lines just discussed. More interestingly, it could try to form 
a prediction (e.g., via a Bayesian estimate) about how the quantities to be op-
timized change in response to own actions, and then select the action which, 
according to such a prediction, seems best. As a result of the consequences of 
such an action, the prediction can then be adapted. This has been explored by 
Little and Sommer (2013), with a discussion of earlier research in psychology 
and a comparison with  reinforcement learning strategies.

It is important to stress, however, that achieving D p q( || ) 0=  (i.e., the 
equality), p = q, is typically not desirable. As the environment is always more 
complex than the system, the system needs to compress the information ob-
tained through its input, instead of trying to produce a faithful copy. Statistical 
learning theory (Vapnik 2000) tells us that model constraints are needed to 
avoid overfi tting the input.

In particular, the system needs to classify and categorize, instead of simply 
reproducing the input. Thus, for instance, it can simply entertain a fi nite num-
ber of hypotheses and then check which of them best fi ts the data. In addition, 
the system may typically not be able to check all the details of the data at hand 
simultaneously, but may need to select certain features that it observes. As 
has been argued (Jost 2004) and subsequently successfully applied in  machine 
learning (Avdiyenko et al. 2015), the system should then select those features 
that have highest discriminative power between the competing hypotheses. 
For instance, when there is a certain number of equally likely hypotheses, one 
should check a feature that is expected to be present under half of the hypoth-
eses, and absent when one of the other hypotheses is correct.

Only an interpretation that captures the signifi cant aspects and ignores the 
unimportant parts of the input as noise is capable of establishing meaning for 
the system. Obviously, going beyond the framework of learning theory, the 
decision about what is signifi cant and what can be treated as noise is important 
for the system, but that decision may be carried on a timescale that is different 
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from the online or batch interpretation of the input signals. Previously, I have 
distinguished between the data or external complexity and the model or inter-
nal complexity (Jost 2004). The external complexity is to be maximized when 
the system wants to extract information from the environment. The internal 
complexity, in contrast, should be minimized to achieve an effi cient repre-
sentation of the data. This leads to two intertwined principles: (a) the system 
should gather data so as to make its models more accurate and improve its pre-
dictions; (b) the system should construct models that enable it to collect more 
meaningful and useful data.

In the light of these principles, let us turn now to schemes that do not simply 
maximize some difference of information theoretical quantities, but create spe-
cifi c structures in the sensory input. Such structures will consist in correlation 
patterns between motor activities and the induced transformations of sensory 
input, as well as between different sensory inputs. Thus, the system not only 
tries to identify and model regularities in the input, it actively creates them in 
terms of correlations between actions and sensations.

Actions Induce Corre lations for Creating Percepts

Percepts are not sensory stimuli, but rather brain states (however defi ned). Of 
course, we believe that there has to be some correspondence between percepts 
and neuronal activities. This does not mean, however, that a percept must nec-
essarily correspond to some activity pattern of a specifi c group of neurons at 
a specifi c time. It could be that some spatiotemporal activity pattern that dy-
namically extends over time gives rise to some, possibly static, percept in our 
subjective experience, perhaps in accordance with the proposal put forward 
by O’Regan and Noë (2001). The question then is: How could such a spatio-
temporal pattern possibly be characterized and by what mechanism could it be 
activated? Proposals about the nature of such patterns include synfi re chains 
(Abeles 1991) and the synchronization patterns of von der Malsburg (1973) 
and Singer (Singer and Gray 1995). Here, we shall formulate some abstract 
principles about their nature and induction.

Thesis 3 On the basis of  sensorimotor contingencies, actions induce 
correlations between neuronal activities in the same or different brain 
regions and thereby induce coherent activity patterns that correspond to 
percepts.

Let us discuss in more concrete terms how this might work. The claim will be 
that saccadic eye or head movements induce correlations between the stimuli 
that correspond to different parts of an object and allow the agent to distinguish 
or identify that object. It is diffi cult, and for many animals even impossible, 
to distinguish a still object from its background. When, in contrast, the ob-
ject moves, there will be specifi c sensory correlations between the different 
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parts of that object while those specifi c correlations will not exist between the 
stimuli coming from the object and those from the background. In addition, 
the movements of rigid objects subjected to physical forces and of animals, for 
instance, are very different from each other; thus, the correlations induced by 
movements should make a distinction between inanimate objects and animals 
quick and easy.

Saccadic and other eye, head, or body movements can also produce such 
specifi c correlations to distinguish an object from its background, in particular 
in conjunction with stereoscopic depth perception. In other words, we locate 
an object by how sensory input on the retina changes in response to our own 
movements. This is fairly obvious. Also, many of the gestalt laws depend on 
suitable types of correlations (for a more precise analysis, see Breidbach and 
Jost 2006). In particular, invariances can be realized by motions. For instance, 
taking an example from O’Regan and Noë (2001), the sensation caused by a 
straight line stays invariant under motions in the direction of that line. Only 
when an endpoint of the line is reached, does the nature of the correlations 
change. What is crucial is the type of correlation between the movements of 
the eye or the head (i.e., the self-induced motions and the actions on one side, 
and the sensory stimulations on the other). In line with O’Regan and Noë’s 
(2001) proposal, that which underlies the percept is nothing but a specifi c cor-
relation pattern of neuronal activities.

An object, however, is more than a geometric shape. The  binding prob-
lem, as identifi ed in particular by Singer (2001), concerns the combination of 
the various features of an object into the perception of an integrated object. 
Again, as I propose here (inspired by discussions with Wolf Singer), this can be 
achieved through correlations induced by sensorimotor contingencies. The key 
observation is that the various features are bound together by their common lo-
cation; that is, one and the same receptive fi eld or region in the retina receives 
information about color, texture, brightness, etc. Through a retinotopic map, 
this then activates the corresponding region in the lateral geniculate nucleus 
(LGN), which is located in the thalamus. When the position in the retina stimu-
lated by such a spot in the object changes because of movements, then all 
these feature stimulations simultaneously move across the LGN. The location 
in the retina and the LGN changes, but various features which belong together 
always stimulate the same area. The thalamus is connected via reciprocal con-
nections to specifi c cortical regions, and the different features are processed in 
different cortical regions. Nevertheless, their joint movement across the retina 
and the LGN induces correlations between specifi c areas in the corresponding 
cortical regions. Via mechanisms of delayed feedback, this may induce specifi c 
synchronization patterns between those areas. As proposed by Christoph von 
der Malsburg and Wolf Singer, these specifi c patterns may correspond to the 
percept of the object (for a detailed survey of dynamic coordination, see von 
der Malsburg et al. 2010). The relevant aspect of such synchronous oscillations 
is not that different neuronal groups are simultaneously active—after all, there 
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is nothing in the brain to record that, and axonal and synaptic transmission 
delays prevent any intrinsic notion of simultaneity in the brain5—but rather 
that particular spatiotemporal activity patterns in the brain may have some 
self-sustaining or self-amplifying capabilities. What is important for the pres-
ent proposal is that sensorimotor contingencies are needed to induce specifi c 
correlations that can become amplifi ed via such a synchronization mechanism, 
or another scheme that establishes spatiotemporally coherent activity patterns. 
I propose that without such specifi c correlations as induced by sensorimotor 
contingencies, a percept of an individual object could not emerge in the brain.

Such a correlation analysis provides a unifying perspective on the “where” 
and the “what” aspect of visual cognition. At an abstract level, it suggests a 
common principle underlying object perception (identifi cation of a coherent 
object in a visual scene as distinct from other objects or the background), iden-
tifi cation (tracking of an individual object that is previously known), and rec-
ognition (classifi cation of an object as belonging to some general concept).6 Of 
course, the nature of the correlations varies between these different tasks. Also, 
important differences exist between identifi cation of an object as an individual 
object with an identity preserved across space and time and its classifi cation as 
a member of some class regardless of its individual identity. However, this is 
not addressed here.

If this proposal is feasible, we need to work out the relevant mathematics. 
This should be a combination of nonlinear dynamics as needed to understand 
synchronization patterns and of information theory that can quantify the cor-
relations on the basis of the concepts introduced in the previous section.

5 This issue needs a more careful discussion than is possible here. Let me only make a few com-
ments. Neurons can fi re when they receive simultaneous input from a specifi c set of presyn-
aptic neurons, and one might therefore argue that at least locally, the simultaneous activity of 
groups of neurons can be detected. There are at least two problems here. First, the postsynaptic 
neuron reacts with some delay; it cannot record that a set of presynaptic neurons is active now, 
but only that it has been active a short while ago. Second, it can at best detect that presynaptic 
neurons have been active within the same small window of time. To record such simultaneity 
by suitable intracellular measurements, one has to bin spikes. Let us assume, for concreteness, 
a bin size of 1 ms. It can then be said that neurons A and B have been simultaneously active 
if their spikes fall within the same bin. However they could also have been active within less 
than 1 ms of each other, although their spikes fall into different bins. For instance, one could 
have spiked at 1.9 ms, the other at 2.1 ms. Of course, such a binning introduces artifacts. Even 
if we say that two neurons fi re simultaneously if they emit a spike within less than 1 ms of each 
other, then A and B can fi re simultaneously in this sense, and B and C can also fi re simultane-
ously, but this does not imply that A and C also fi re simultaneously. The notion of simultaneity 
is not a transitive relation. For the technical aspects, see Grün and Rotter (2010). 

6 Here I am employing the terminology used in the machine vision literature. This is not com-
pletely compatible with the conventions in the psychology literature, in particular concerning 
the meaning of “object perception,” which seems to include the aspect of identifi cation/clas-
sifi cation. The machine vision terminology is concerned with the computational requirements 
and diffi culties involved in those tasks, and this approach also offers useful aspects for the 
present essay.
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In technical terms, there is an important task for dynamical systems theory: 
How could correlations be detected and exploited in the presence of neuronal 
transmission delays (i.e., in the absence of any global notion of simultaneity 
in the brain)?

As argued here, actions generate correlations and there needs to be some 
 action selection principle. Actions should be chosen such that they cause suit-
able correlations from which percepts can then be formed. This issue is not 
addressed here, although the framework developed in Jost (2004) should be 
of some help.

Instead, we turn to the important question of how such correlations can cre-
ate stable and reproducible percepts. This relationship will be argued to be the 
result of a learning process.

Thesis 4 The nature of  learning is to transform correlations into as-
sociations. Thereby it can stabilize the induction of specifi c neuronal 
activity patterns in response to specifi c sensory patterns.

Thus, when experienced often enough, specifi c correlation patterns (between 
motor activities and sensory stimulations as well as between different types of 
sensory stimulations induced by sensorimotor contingencies corresponding to 
specifi c classes of stimuli) can cause neuronal dynamics which can be inter-
preted as associations.

There is, in fact, a specifi c neuronal learning mechanism, some temporal 
Hebbian scheme, called the spike timing-dependent synaptic plasticity rule, 
fi rst introduced by Gerstner et al. (1996). It can be seen as a neuronal version of 
operant conditioning (Jost 2006). The effect is that when the initiating stimulus 
for some specifi c dynamical patterns is presented, that pattern is induced with-
out the subsequent stimuli necessarily coming in as well. In other words, we 
“see” something when triggered by some specifi c sensory input, because we 
have “learned” that this stimulus is typically followed by a specifi c sequence of 
further stimuli, and since we “know” this, we no longer need to confi rm those 
subsequent stimuli to “perceive” the corresponding entity. This process can 
only get disturbed or interrupted by subsequent sensory stimuli that contradict 
the created percept and which may then induce some other percept in turn. On 
this basis, interpolations can be made. We only need to sample the sensory data 
at certain intervals to reconstruct what happened in between. Again, this is not 
an active process, in the sense that it requires a particular effort. The sensory 
data coming in at certain intervals are simply suffi cient to trigger and maintain 
suitable neuronal dynamics, as long as there is no mismatch between the ongo-
ing neuronal dynamics and the sensations received.

As an aside, since such specifi c dynamical patterns only emerge as the result 
of synaptic learning processes, infants do not have such percepts prior to the 
establishment of the corresponding dynamical pattern. That is presumably why 
we do not have early childhood memories of percepts. As I have argued, when 
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a percept corresponds to some dynamical neuronal pattern, and if that pattern 
only emerges as the result of a learning process, and if memory recall operates 
by triggering that dynamical pattern and thereby evoking the corresponding 
percept, then there is nothing to be remembered before the learning mechanism 
has created the relevant associations. Of course, to elaborate this proposal, one 
would need to investigate whether, and if so, why, the mechanisms creating 
the associations in question take hold at just the age at which children begin to 
form memories. In particular, the transition between the essentially memory-
less state and that where a rich set of memories becomes available seems to be 
relatively sudden, and therefore, the underlying mechanism probably must be 
of a rather general nature.

The preceding proposal is somewhat similar to that of the predictive brain, 
but is different at some crucial point. There are no explicit predictions, only 
at best implicit ones contained in the specifi c spatiotemporal activity pattern 
triggered by a specifi c sensory stimulation. As described, the learning pro-
cess transforms correlations into associations, so that a sensory stimulus can 
trigger an autonomous neuronal activity pattern which developed from past 
experiences in response to an entire sequence of stimuli. After learning, the 
initial stimulus is suffi cient to trigger that pattern, and in that sense, the pat-
tern contains an implicit prediction of the entire stimulus sequence. The rest 
of the sequence is no longer needed, and we might even experience it when it 
is not there. Of course, when contradictory sensory signals arrive, the neuro-
nal activity pattern may get disturbed and interrupted. One may then say that 
the implicit prediction contained in the neuronal activity pattern has not been 
confi rmed. For an analysis of backward visual masking effects, in terms of a 
confl ict between internal predictions generated by the original stimulus and 
the subsequent contradicting sensory signal of the mask, see for instance Elze 
et al. (2011). Importantly, according to what is proposed here, there is no need 
for an explicit prediction. The activity pattern simply unfolds as if that stimu-
lus sequence from the past, which repeatedly followed the initial stimulus, 
were there, unless too many contradictory sensory signals are received. This 
brings into question the causality paradigm, which is often applied to decode 
neuronal responses. This paradigm states that only earlier stimuli can infl uence 
a response. In physical terms, this is correct. However, when the response is 
strongly correlated with sensory input that typically follows, or has repeatedly 
followed, the fi rst stimulus, a relation exists between a neuronal activity pat-
tern and later stimuli. This relation can then be used to decode the meaning of 
neuronal activity. Of course, we already know from the experiments of Libet 
(1985) that the subjectively experienced temporal order may differ from that of 
the underlying neuronal activities.

As just argued, the sensorimotor contingencies can get internalized as a 
result of the learning process. This scheme can then be iterated. Correlations 
between fi ring patterns in different brain regions could form internal percepts. 
I would even speculate that much of higher cognition can be captured by such 
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a framework. In particular, this allows for the refl exive nature of conscious-
ness. We perceive that we perceive—Leibniz’s notion of apperception. In the 
framework proposed here, such internal percepts can be internally detected, 
perhaps by other brain regions, or better, by other processes evaluating those 
percepts. The insight that sensation is coupled to action may then explain the 
unity of consciousness. We may have different and perhaps confl icting sen-
sations simultaneously, but, as emphasized in the Supramodular Interaction 
Theory (Morsella 2005), we need to select a single action at each instance, or 
at least cannot simultaneously carry out confl icting ones.

Limitations

When one  tries to apply a correlation-based analysis to high-dimensional data 
sets, one quickly realizes that this does not work. An important insight of recent 
research in machine learning is that such principles need to be supplemented 
by  structural  priors. Such a structural prior could be a  sparsity assumption. For 
instance, to analyze an auditory scene, one assumes that there is only a small 
number of sound sources. This is explored in compressive sensing. Or, one 
might assume that the data are concentrated on or near a smooth manifold that 
might stretch in many dimensions, but which is intrinsically low dimensional. 
This is called manifold learning. One might also make more general continuity 
assumptions (e.g., to identify movement patterns), or one could assume that 
the data arise as sums of a few tensor products of vectors in low-dimensional 
subspaces. Of course, when confronted with a specifi c data set, the question 
becomes: What is the most appropriate structural prior? This is somewhat 
analogous to the problem of fi nding the best heuristics in an intransparent situ-
ation, as discussed by Gigerenzer and Todd (1999). Warglien et al. (submitted) 
argue that structural assumptions like convexity, monotonicity, or continuity 
are essential for the semantics of verbs. Likewise, gestalt laws also depend on 
more specifi c classes of transformations, rather than on simple correlations 
(Breidbach and Jost 2006).

One needs structural priors or heuristic techniques, or whatever one wants 
to call them, to generate some preliminary coarse structure within which a 
more precise correlation analysis can then be successfully applied. The origin 
of such structural priors and, in particular, whether they are prewired in our 
brains or can possibly be learned (and if so, how) constitute areas for future 
enquiry. In some sense, they might constitute a modern version of Kant’s con-
cept of synthetic a priori knowledge.
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